

 827

20

CORBA CASE STUDY

20.1 Introduction
20.2 CORBA RMI
20.3 CORBA services
20.4 Summary

CORBA is a middeware design that allows application programs to communicate with one
another irrespective of their programming languages, their hardware and software
platforms, the networks they communicate over and their implementors.

Applications are built from CORBA objects, which implement interfaces defined in
CORBA’s interface definition language, IDL. Clients access the methods in the IDL
interfaces of CORBA objects by means of RMI. The middleware component that supports
RMI is called the Object Request Broker or ORB.

The specification of CORBA has been sponsored by members of the Object
Management Group (OMG). Many different ORBs have been implemented from the
specification, supporting a variety of programming languages including Java and C++.

CORBA services provide generic facilities that may be of use in a wide variety of
applications. They include the Naming Service, the Event and Notification Services, the
Security Service, the Transaction and Concurrency Services and the Trading Service.

828

CHAPTER 20 CORBA CASE STUDY

20.1 Introduction

The OMG (Object Management Group) was formed in 1989 with a view to encouraging
the adoption of distributed object systems in order to gain the benefits of object-oriented
programming for software development and to make use of distributed systems, which
were becoming widespread. To achieve its aims, the OMG advocated the use of open
systems based on standard object-oriented interfaces. These systems would be built
from heterogeneous hardware, computer networks, operating systems and programming
languages.

An important motivation was to allow distributed objects to be implemented in
any programming language and to be able to communicate with one another. They
therefore designed an interface language that was independent of any specific
implementation language.

They introduced a metaphor, the

 object request broker

 (or ORB), whose role is to
help a client to invoke a method on an object. This role involves locating the object,
activating the object if necessary and then communicating the client’s request to the
object, which carries it out and replies.

In 1991, a specification for an object request broker architecture known as
CORBA (Common Object Request Broker Architecture) was agreed by a group of
companies. This was followed in 1996 by the CORBA 2.0 specification, which defined
standards enabling implementations made by different developers to communicate with
one another. These standards are called the General Inter-ORB protocol or GIOP. It is
intended that GIOP can be implemented over any transport layer with connections. The
implementation of GIOP for the Internet uses the TCP protocol and is called the Internet
Inter-ORB Protocol or IIOP [OMG 2004a]. CORBA 3 first appeared in late 1999 and a
component model has been added recently.

 The main components of CORBA’s language-independent RMI framework are
the following:

•

An interface definition language known as IDL, which is illustrated early in
Section 20.2 and described more fully in Section 20.2.3.

•

An architecture, which is discussed in Section 20.2.2.

•

The GIOP defines an external data representation, called CDR, which is described
in Section 4.3. It also defines specific formats for the messages in a request-reply
protocol. In addition to request and reply messages, it specifies messages for
enquiring about the location of an object, for cancelling requests and for reporting
errors.

•

The IIOP, an implementation of GIOP defines a standard form for remote object
references, which is described in Section 20.2.4.

The CORBA architecture also allows for CORBA services – a set of generic services
that can be useful for distributed applications. These are introduced in Section 20.3
which includes a more detailed discussion of the Naming Service, the Event Service, the
Notification Service and the Security Service. For an interesting collection of articles on
CORBA, see the

CACM

 special issue [Seetharamanan 1998].

SECTION 20.2 CORBA RMI

829

Before discussing the above components of CORBA, we introduce CORBA RMI
from a programmer’s point of view.

20.2 CORBA RMI

Programming in a multi-language RMI system such as CORBA RMI requires more of
the programmer than programming in a single-language RMI system such as Java RMI.
The following new concepts need to be learned:

•

the object model offered by CORBA;

•

the interface definition language and its mapping onto the implementation
language.

Other aspects of CORBA programming are similar to those discussed in Chapter 5. In
particular, the programmer defines remote interfaces for the remote objects and then
uses an interface compiler to produce the corresponding proxies and skeletons. But in
CORBA, proxies are generated in the client language and skeletons in the server
language. We will use the shared whiteboard example introduced in Section 5.5 to
illustrate how to write an IDL specification and to build server and client programs.

CORBA's object model

◊

The CORBA object model is similar to the one described in
Section 5.2, but clients are not necessarily objects – a client can be any program that
sends request messages to remote objects and receives replies. The term

CORBA object

is used to refer to remote objects. Thus, a CORBA object implements an IDL interface,
has a remote object reference and is able to respond to invocations of methods in its IDL
interface. A CORBA object can be implemented by a language that is not object-
oriented, for example without the concept of class. Since implementation languages will
have different notions of class or even none at all, the class concept does not exist in
CORBA. Therefore classes cannot be defined in CORBA IDL, which means that
instances of classes cannot be passed as arguments. However, data structures of various
types and arbitrary complexity can be passed as arguments.

CORBA IDL

◊

A CORBA IDL interface specifies a name and a set of methods that clients
can request. Figure 20.1 shows two interfaces named

Shape

 (line 3) and

ShapeList

(line
5)

,

which are IDL versions of the interfaces defined in Figure 5.12. These are preceded
by definitions of two

structs

, which are used as parameter types in defining the methods.
Note in particular that

GraphicalObject

 is defined as a

struct

, whereas it was a class in
the Java RMI example. A component whose type is a

struct

 has a set of fields containing
values of various types like the instance variables of an object, but it has no methods.
There is more about IDL in Section 20.2.3.

Parameters and results in CORBA IDL:

Each parameter is marked as being for input or
output or both, using the keywords

in

,

out

 or

inout

. Figure 5.2 illustrates a simple
example of the use of those keywords. In Figure 20.1, line 7, the parameter of

newShape

is an

in

 parameter to indicate that the argument should be passed from client to server in
the request message. The return value provides an additional

out

 parameter – it can be
indicated as

void

 if there is no

out

 parameter.

830

CHAPTER 20 CORBA CASE STUDY

The parameters may be any one of the primitive types such as

long

 and

boolean

or one of the constructed types such as

struct

 or

array

. Primitive and structured types
are described in more detail in Section 20.2.3. Our example shows the definitions of two

structs

 in lines 1 and 2. Sequences and arrays are defined in

typedefs

, as shown in line
4, which shows a sequence of elements of type

Shape

of length 100. The semantics of
parameter passing are as follows:

Passing CORBA objects

:

Any parameter whose type is specified by the name of an
IDL interface, such as the return value

Shape

 in line 7, is a reference to a CORBA
object and the value of a remote object reference is passed.

Passing CORBA primitive and constructed types

:

Arguments of primitive and
constructed types are copied and passed by value. On arrival, a new value is created
in the recipient’s process. For example, the

struct

GraphicalObject

 passed as
argument (in line 7) produces a new copy of this

struct

 at the server.

These two forms of parameter passing are combined in the method

allShapes

 (in line 8),
whose return type is an array of type

Shape

 – that is, an array of remote object
references. The return value is a copy of the array in which each of the elements is a
remote object reference.

Figure 20.1 IDL interfaces Shape and ShapeList

struct Rectangle{ 1
long width;
long height;
long x;
long y;

} ;
struct GraphicalObject { 2

string type;
Rectangle enclosing;
boolean isFilled;

};
interface Shape { 3

long getVersion() ;
GraphicalObject getAllState() ; // returns state of the GraphicalObject

};
typedef sequence <Shape, 100> All; 4
interface ShapeList { 5

exception FullException{ }; 6
Shape newShape(in GraphicalObject g) raises (FullException); 7
All allShapes(); // returns sequence of remote object references 8
long getVersion() ;

};

SECTION 20.2 CORBA RMI

831

Type

Object

:

Object

 is the name of a type whose values are remote object references. It
is effectively a common supertype of all of IDL interface types such as

Shape

 and

ShapeList

.

Exceptions in CORBA IDL:

CORBA IDL allows exceptions to be defined in interfaces and
thrown by their methods. To illustrate this point, we have defined our list of shapes in
the server as a sequence of a fixed length (line 4) and have defined

FullException

 (line
6), which is thrown by the method

newShape

 (line 7) if the client attempts to add a shape
when the sequence is full.

Invocation semantics:

Remote invocation in CORBA has

at-most-once

 call semantics as
the default. However, IDL may specify that the invocation of a particular method has

maybe

 semantics by using the

oneway

 keyword. The client does not block on

oneway

requests, which can be used only for methods without results. For an example of a

oneway

 request, see the example on callbacks at the end of Section 20.2.1.

The CORBA Naming service

◊

The CORBA Naming Service is discussed in Section
20.3.1. It is a binder that provides operations including

rebind

 for servers to register the
remote object references of CORBA objects by name and

resolve

 for clients to look
them up by name. The names are structured in a hierarchic fashion, and each name in a
path is inside a structure called a

NameComponent

. This makes access in a simple
example seem rather complex.

CORBA pseudo objects

◊

Implementations of CORBA provide interfaces to the
functionality of the ORB that programmers need to use. In particular, they include
interfaces to two of the components shown in Figure 20.6: the

ORB cor

e and the

 Object
Adaptor

. The roles of these two components are explained in Section 20.2.2
The objects representing these components are called

pseudo-objects

 because they
cannot be used like CORBA objects; for example, they cannot be passed as arguments
in RMIs. They have IDL interfaces and are implemented as libraries. Those relevant to
our simple example (which uses Java 2 version 1.4) are:

•

The Object Adaptor, which has been portable since CORBA 2.2, is known as the
Portable Object Adaptor (POA). Its interface includes: one method for activating
a

POAmanager

 and another method

servant_to_reference

 for registering a
CORBA object.

•

The ORB, whose interface includes: the method

init

, which must be called to
initialize the ORB; the method

resolve_initial_references

, which is used to find
services such as the Naming Service and the root POA; and other methods, which
enable conversions between remote object references and strings.

20.2.1 CORBA client and server example

This section outlines the steps necessary to produce client and server programs that use
the IDL

Shape

 and

ShapeList

 interfaces shown in Figure 20.1. This is followed by a
discussion of callbacks in CORBA. We use Java as the client and server languages, but
the approach is similar for other languages. The interface compiler

idlj

 can be applied to
the CORBA interfaces to generate the following items:

832

CHAPTER 20 CORBA CASE STUDY

•

The equivalent Java interfaces – two per IDL interface. The name of the first Java
interface ends in

Operations

 – this interface just defines the operations in the IDL
interface. The Java second interface has the same name as the IDL interface and
implements the operations in the first interface as well as those in an interface
suitable for a CORBA object. For example, the IDL interface

ShapeList

 results in
two Java interfaces

ShapeListOperations

 and

ShapeList

 as shown in Figure 20.2

.

•

The server skeletons for each

idl

 interface. The names of skeleton classes end in

POA

, for example

ShapeListPOA.

•

The proxy classes or client stubs, one for each IDL interface. The names of these
classes end in

Stub

, for example

_ShapeListStub

.

•

A Java class to correspond to each of the

structs

 defined with the IDL interfaces.
In our example, classes

Rectangle

 and

GraphicalObject

 are generated. Each of
these classes contains a declaration of one instance variable for each field in the
corresponding

struct

 and a pair of constructors, but no other methods.

•

Classes called helpers and holders, one for each of the types defined in the IDL
interface. A helper class contains the

narrow

 method, which is used to cast down
from a given object reference to the class to which it belongs, which is lower down
the class hierarchy. For example, the

narrow

 method in

ShapeHelper

 casts down to
class

Shape

. The holder classes deal with out and inout arguments, which cannot be
mapped directly onto Java. See Exercise 20.9 for an example of the use of holders.

Server program ◊ The server program should contain implementations of one or more
IDL interfaces. For a server written in an object-oriented language such as Java or C++,
these implementations are implemented as servant classes. CORBA objects are
instances of servant classes.

When a server creates an instance of a servant class, it must register it with the
POA, which makes the instance into a CORBA object and gives it a remote object
reference. Unless this is done, the CORBA object will not be able to receive remote
invocations. Readers who studied Chapter 5 carefully may realize that registering the
object with the POA causes it to be recorded in the CORBA equivalent of the remote
object table.

In our example, the server contains implementations of the interfaces Shape and
ShapeList in the form of two servant classes, together with a server class that contains a
initialization section (see Section 5.2.5) in its main method.

Figure 20.2 Java interfaces generated by idlj from CORBA interface ShapeList.

public interface ShapeListOperations {
 Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException;
 Shape[] allShapes();
 int getVersion();
}

public interface ShapeList extends ShapeListOperations, org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

SECTION 20.2 CORBA RMI 833

The servant classes: Each servant class extends the corresponding skeleton class and
implements the methods of an IDL interface using the method signatures defined in
the equivalent Java interface. The servant class that implements the ShapeList
interface is named ShapeListServant, although any other name could have been
chosen. Its outline is shown in Figure 20.3. Consider the method newShape in line 1,
which is a factory method because it creates Shape objects. To make a Shape object
a CORBA object, it is registered with the POA by means of its servant_to_reference
method, as shown in line 2, which makes use of the reference to the root POA which
was passed on via the constructor when the servant was created. Complete versions
of the IDL interface and the client and server classes in this example are available at
www.cdk4.net/corba.

The server: The main method in the server class ShapeListServer is shown in Figure
20.4. It first creates and initializes the ORB (line 1). It gets a reference to the root
POA and activates the POAManager (lines 2 & 3). Then it creates an instance of
ShapeListServant, which is just a Java object (line 4) and in doing this, passes on a
reference to the root POA. It then makes it into a CORBA object by registering it with

Figure 20.3 ShapeListServant class of the Java server program for CORBA interface ShapeList

import org.omg.CORBA.*;
import org.omg.PortableServer.POA;
class ShapeListServant extends ShapeListPOA {

private POA theRootpoa;
private Shape theList[];
private int version;
 private static int n=0;

public ShapeListServant(POA rootpoa){
theRootpoa = rootpoa;
// initialize the other instance variables

}

public Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException {1
version++;
Shape s = null;

 ShapeServant shapeRef = new ShapeServant(g, version);
 try {

org.omg.CORBA.Object ref = theRoopoa.servant_to_reference(shapeRef); 2
s = ShapeHelper.narrow(ref);

} catch (Exception e) {}
 if(n >=100) throw new ShapeListPackage.FullException();
theList[n++] = s;
return s;

}
public Shape[] allShapes(){ ... }
public int getVersion() { ... }

}

834 CHAPTER 20 CORBA CASE STUDY

the POA (line 5). After this, it registers the server with the Naming Service. It then
waits for incoming client requests (line 10).

Servers using the Naming Service first get a root naming context (line 6), then make a
NameComponent (line 7), define a path (line 8) and finally use the rebind method (line
9) to register the name and remote object reference. Clients carry out the same steps but
use the resolve method as shown in Figure 20.5, line 2.

The client program ◊ An example client program is shown in Figure 20.5. It creates and
initializes an ORB (line 1), then contacts the Naming Service to get a reference to the
remote ShapeList object by using its resolve method (line 2). After that it invokes its
method allShapes (line 3) to obtain a sequence of remote object references to all the
Shapes currently held at the server. It then invokes the getAllState method (line 4),
giving as argument the first remote object reference in the sequence returned; the result
is supplied as an instance of the GraphicalObject class.

The getAllState method seems to contradict our earlier statement that objects
cannot be passed by value in CORBA, because both client and server deal in instances
of the class GraphicalObject. However, there is no contradiction: the CORBA object
returns a struct, and clients using a different language might see it differently. For
example, in the C++ language the client would see it as a struct. Even in Java, the
generated class GraphicalObject is more like a struct because it has no methods.

Figure 20.4 Java class ShapeListServer

import org.omg.CosNaming.*;
 import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
public class ShapeListServer {

public static void main(String args[]) {
 try{

ORB orb = ORB.init(args, null); 1
POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA")); 2
rootpoa.the_POAManager().activate(); 3
ShapeListServant SLSRef = new ShapeListServant(rootpoa); 4
org.omg.CORBA.Object ref = rootpoa.servant_to_reference(SLSRef); 5
ShapeList SLRef = ShapeListHelper.narrow(ref);
org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");

 NamingContext ncRef = NamingContextHelper.narrow(objRef); 6
NameComponent nc = new NameComponent("ShapeList", ""); 7
NameComponent path[] = {nc}; 8
ncRef.rebind(path, SLRef); 9
orb.run(); 10

 } catch (Exception e) { ... }
}

}

SECTION 20.2 CORBA RMI 835

Client programs should always catch CORBA SystemExceptions, which report on
errors due to distribution (see line 5). Client programs should also catch the exceptions
defined in the IDL interface, such as the FullException thrown by the newShape method.

This example illustrates the use of the narrow operation: the resolve operation of
the Naming Service returns a value of type Object; this type is narrowed to suit the
particular type required – ShapeList.

Callbacks ◊ Callbacks can be implemented in CORBA in a manner similar to the one
described for Java RMI in Section 5.5.1. For example, the WhiteboardCallback
interface may be defined as follows:

interface WhiteboardCallback {
 oneway void callback(in int version);

};

This interface is implemented as a CORBA object by the client, enabling the server to
send the client a version number whenever new objects are added. But before the server
can do this, the client needs to inform the server of the remote object reference of its
object. To make this possible, the ShapeList interface requires additional methods such
as register and deregister, as follows:

int register(in WhiteboardCallback callback);
void deregister(in int callbackId);

After a client has obtained a reference to the ShapeList object and created an instance of
WhiteboardCallback, it uses the register method of ShapeList to inform the server that

Figure 20.5 Java client program for CORBA interfaces Shape and ShapeList

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListClient{

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null); 1
org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", "");
NameComponent path [] = { nc };
ShapeList shapeListRef =
ShapeListHelper.narrow(ncRef.resolve(path)); 2
Shape[] sList = shapeListRef.allShapes(); 3
GraphicalObject g = sList[0].getAllState(); 4

} catch(org.omg.CORBA.SystemException e) {...}
}

}

836 CHAPTER 20 CORBA CASE STUDY

it is interested in receiving callbacks. The ShapeList object in the server is responsible
for keeping a list of interested clients and notifying all of them each time its version
number increases when a new object is added. The callback method is declared as
oneway so that the server may use asynchronous calls to avoid delay as it notifies each
client.

20.2.2 The architecture of CORBA

The architecture is designed to support the role of an object request broker that enables
clients to invoke methods in remote objects, where both clients and servers can be
implemented in a variety of programming languages. The main components of the
CORBA architecture are illustrated in Figure 20.6.

This figure should be compared with Figure 5.7, in which case it will be noted that
the CORBA architecture contains three additional components: the object adapter, the
implementation repository and the interface repository.

CORBA provides for both static and dynamic invocations. Static invocations are
used when the remote interface of the CORBA object is known at compile time,
enabling client stubs and server skeletons to be used. If the remote interface is not known
at compile time, dynamic invocation must be used. Most programmers prefer to use
static invocation because it provides a more natural programming model.

We now discuss the components of the architecture, leaving those concerned with
dynamic invocation until last.

ORB core ◊ The role of the ORB core is similar to that of the communication module of
Figure 5.7. In addition, an ORB core provides an interface that includes the following:

• operations enabling it to be started and stopped;

• operations to convert between remote object references and strings;

• operations to provide argument lists for requests using dynamic invocation.

Object adapter ◊ The role of an object adapter is to bridge the gap between CORBA
objects with IDL interfaces and the programming language interfaces of the

Figure 20.6 The main components of the CORBA architecture

client server

proxy

or dynamic invocation

implementation
 repository

ob
je

ct
ad

ap
te

r

ORBORB

sk
el

et
on

or dynamic skeleton

client
 program

interface
 repository

Request

Reply
corecore for A

Servant
 A

SECTION 20.2 CORBA RMI 837

corresponding servant classes. This role also includes that of the remote reference and
dispatcher modules in Figure 5.7. An object adapter has the following tasks:

• it creates remote object references for CORBA objects (see Section 20.2.4);

• it dispatches each RMI via a skeleton to the appropriate servant;

• it activates and deactivates servants.

An object adapter gives each CORBA object a unique object name, which forms part of
its remote object reference. The same name is used each time an object is activated. The
object name may be specified by the application program or generated by the object
adapter. Each CORBA object is registered with its object adapter, which may keep a
remote object table that maps the names of CORBA objects to their servants.

Each object adapter has its own name, which also forms part of the remote object
references of all of the CORBA objects it manages. This name may either be specified
by the application program or generated automatically.

Portable object adapter ◊ The CORBA 2.2 standard for object adapters is called the
Portable Object Adapter. It is called portable because it allows applications and servants
to be run on ORBs produced by different developers [Vinoski 1998]. This is achieved
by means of the standardization of the skeleton classes and of the interactions between
the POA and the servants.

The POA supports CORBA objects with two different sorts of lifetimes:

• those whose lifetimes are restricted to that of the process their servants are
instantiated in;

• and those whose lifetimes can span the instantiations of servants in multiple
processes.

The former have transient object references and the latter have persistent object
references (see Section 20.2.4).

The POA allows CORBA objects to be instantiated transparently; and in addition,
it separates the creation of CORBA objects from the creation of the servants that
implement those objects. Server applications such as databases with large numbers of
CORBA objects can create servants on demand, only when the objects are accessed. In
this case, they may use database keys for the object names, Alternatively, they may use
a single servant to support all of these objects.

In addition, it is possible to specify policies to the POA, for example, as to whether
it should provide a separate thread for each invocation, whether the object references
should be persistent or transient and whether there should be a separate servant for each
CORBA object. The default is that a single servant can represent all of the CORBA
objects for its POA.

Skeletons ◊ Skeleton classes are generated in the language of the server by an IDL
compiler. As before, remote method invocations are dispatched via the appropriate
skeleton to a particular servant, and the skeleton unmarshals the arguments in request
messages and marshals exceptions and results in reply messages.

Client stubs/proxies ◊ These are in the client language. The class of a proxy (for object-
oriented languages) or a set of stub procedures (for procedural languages) is generated
from an IDL interface by an IDL compiler for the client language. As before, the client

838 CHAPTER 20 CORBA CASE STUDY

stubs/proxies marshal the arguments in invocation requests and unmarshal exceptions
and results in replies.

Implementation repository ◊ An implementation repository is responsible for activating
registered servers on demand and for locating servers that are currently running. The
object adapter name is used to refer to servers when registering and activating them.

An implementation repository stores a mapping from the names of object adapters
to the pathnames of files containing object implementations. Object implementations
and object adapter names are generally registered with the implementation repository
when server programs are installed. When object implementations are activated in
servers, the hostname and port number of the server are added to the mapping.

Not all CORBA objects need to be activated on demand. Some objects, for example
callback objects created by clients, run once and cease to exist when they are no longer
needed. They do not use the implementation repository.

An implementation repository generally allows extra information to be stored
about each server, for example access control information as to who is allowed to
activate it or to invoke its operations. It is possible to replicate information in
implementation repositories in order to provide availability or fault tolerance.

Interface repository ◊ The role of the interface repository is to provide information
about registered IDL interfaces to clients and servers that require it. For an interface of
a given type it can supply the names of the methods and for each method, the names and
types of the arguments and exceptions. Thus, the interface repository adds a facility for
reflection to CORBA. Suppose that a client program receives a remote reference to a
new CORBA object. Also suppose that the client has no proxy for it; then it can ask the
interface repository about the methods of the object and the types of parameter each of
them requires.

When an IDL compiler processes an interface, it assigns a type identifier to each
IDL type it encounters. For each interface registered with it, the interface repository
provides a mapping between the type identifier of that interface and the interface itself.
Thus, the type identifier of an interface is sometimes called the repository ID because it
may be used as a key to IDL interfaces registered in the interface repository.

Every CORBA remote object reference includes a slot that contains the type
identifier of its interface, enabling clients that hold it to enquire of its type with the
interface repository. Those applications that use static (ordinary) invocation with client
proxies and IDL skeletons do not require an interface repository. Not all ORBs provide
an interface repository.

Dynamic invocation interface ◊ As suggested in Section 5.5, in some applications, it
may be necessary to construct a client program without knowing all the proxy classes it
will need in the future. For example, an object browser might need to display
information about all the CORBA objects available in the various servers in a distributed
system. It is not feasible that such a program should have to include proxies for all of

Implementation repository entry:

object adapter name pathname of object
implementation

hostname and port number
of server

SECTION 20.2 CORBA RMI 839

these objects, particularly as new objects may be added to the system as time passes.
CORBA does not allow classes for proxies to be downloaded at run time as in Java RMI.
The dynamic invocation interface is CORBA’s alternative.

The dynamic invocation interface allows clients to make dynamic invocations on
remote CORBA objects. It is used when it is not practical to employ proxies. The client
can obtain from the interface repository the necessary information about the methods
available for a given CORBA object. The client may use this information to construct
an invocation with suitable arguments and send it to the server.

Dynamic skeletons ◊ Again, as explained in Section 5.5, it may be necessary to add to
a server a CORBA object whose interface was unknown when the server was compiled.
If a server uses dynamic skeletons, then it can accept invocations on the interface of a
CORBA object for which it has no skeleton. When a dynamic skeleton receives an
invocation, it inspects the contents of the request to discover its target object, the method
to be invoked and the arguments. It then invokes the target.

Legacy code ◊ The term legacy code refers to existing code that was not designed with
distributed objects in mind. A piece of legacy code may be made into a CORBA object
by defining an IDL interface for it and providing an implementation of an appropriate
object adapter and the necessary skeletons.

20.2.3 CORBA Interface Definition Language

The CORBA Interface Definition Language, IDL, provides facilities for defining
modules, interfaces, types, attributes and method signatures. We have shown examples
of all of the above, apart from modules, in Figures 5.2 and 20.1. IDL has the same lexical
rules as C++ but has additional keywords to support distribution, for example interface,
any, attribute, in, out, inout, readonly, raises. It also allows standard C++ pre-
processing facilities. See, for example, the typedef for All in Figure 20.7. The grammar
of IDL is a subset of ANSI C++ with additional constructs to support method signatures.
We give here only a brief overview of IDL. A useful overview and many examples are
given in Baker [1997] and Henning and Vinoski [1999]. The full specification is
available in on the OMG website [OMG 2002a].

IDL modules ◊ The module construct allows interfaces and other IDL type definitions to
be grouped in logical units. A module defines a naming scope, which prevents names
defined within a module clashing with names defined outside it. For example, the
definitions of the interfaces Shape and ShapeList could belong to a module called
Whiteboard, as shown in Figure 20.7.
IDL interfaces ◊ As we have seen, an IDL interface describes the methods that are
available in CORBA objects that implement that interface. Clients of a CORBA object
may be developed just from the knowledge of its IDL interface. From a study of our
examples, readers will see that an interface defines a set of operations and attributes and
generally depends on a set of types defined with it. For example, the PersonList interface
in Figure 5.2 defines an attribute and three methods and depends on the type Person.

840 CHAPTER 20 CORBA CASE STUDY

IDL methods ◊ The general form of a method signature is:

[oneway] <return_type> <method_name> (parameter1,..., parameterL)
[raises (except1,..., exceptN)] [context (name1,..., nameM)]

where the expressions in square brackets are optional. For an example of a method
signature that contains only the required parts, consider:

void getPerson(in string name, out Person p);

As explained in the introduction to Section 20.2, the parameters are labelled as in, out
or inout, where the value of an in parameter is passed from the client to the invoked
CORBA object and the value of an out parameter is passed back from the invoked
CORBA object to the client. Parameters labelled as inout are seldom used, but they
indicate that the parameter value may be passed in both directions. The return type may
be specified as void if no value is to be returned.

The optional oneway expression indicates that the client invoking the method will
not be blocked while the target object is carrying out the method. In addition, oneway
invocations are executed once or not at all – that is, with maybe invocation semantics.
We saw the following example in Section 20.2.1:

 oneway void callback(in int version);

In this example, where the server calls a client each time a new shape is added, an
occasional lost request is not a problem to the client, because the call just indicates the
latest version number and subsequent calls are unlikely to be lost.

The optional raises expression indicates user-defined exceptions that can be
raised to terminate an execution of the method. For example, consider the following
example from Figure 20.1:

exception FullException{ };
Shape newShape(in GraphicalObject g) raises (FullException);

The method newShape specifies with the raises expression that it may raise an exception
called FullException, which is defined within the ShapeList interface. In our example,

Figure 20.7 IDL module Whiteboard.

module Whiteboard {
struct Rectangle{
...} ;
struct GraphicalObject {
...};
interface Shape {
...};
typedef sequence <Shape, 100> All;
interface ShapeList {
...};

};

SECTION 20.2 CORBA RMI 841

the exception contains no variables. However, exceptions may be defined to contain
variables, for example:

exception FullException {GraphicalObject g };

When an exception that contains variables is raised, the server may use the variables to
return information to the client about the context of the exception.

CORBA can also produce system exceptions relating to problems with servers,
such as their being too busy or unable to be activated, problems with communication and
client-side problems. Client programs should handle user-defined and system
exceptions. The optional context expression is used to supply mappings from string
names to string values. See Baker [1997] for an explanation of context.

IDL types ◊ IDL supports fifteen primitive types, which include short (16-bit), long (32-
bit), unsigned short, unsigned long, float (32-bit), double (64-bit), char, boolean
(TRUE, FALSE), octet (8-bit), and any (which can represent any primitive or
constructed type). Constants of most of the primitive types and constant strings may be
declared, using the const keyword. IDL provides a special type called Object, whose
values are remote object references. If a parameter or result is of type Object, then the
corresponding argument may refer to any CORBA object.

IDL’s constructed types are described in Figure 20.8, all of which are passed by
value in arguments and results. All arrays or sequences used as arguments must be
defined in typedefs. None of the primitive or constructed data types can contain
references.

Attributes ◊ IDL interfaces can have attributes as well as methods. Attributes are like
public class fields in Java. Attributes may be defined as readonly where appropriate. The
attributes are private to CORBA objects, but for each attribute declared, a pair of
accessor methods is generated automatically by the IDL compiler, one to retrieve the
value of the attribute and the other to set it. For readonly attributes, only the getter
method is provided. For example, the PersonList interface defined in Figure 5.2 includes
the following definition of an attribute:

readonly attribute string listname;

Inheritance ◊ IDL interfaces may be extended. For example, if interface B extends
interface A, this means that it may add new types, constants, exceptions, methods and
attributes to those of A. An extended interface can redefine types, constants and
exceptions, but is not allowed to redefine methods. A value of an extended type is valid
as the value of a parameter or result of the parent type. For example, the type B is valid
as the value of a parameter or result of the type A.

interface A { };
interface B: A{ };
interface C {};
interface Z : B, C {};

In addition, an IDL interface may extend more than one interface. For example, interface
Z extends both B and C. This means that Z has all of the components of both B and C
(apart from those it redefines) as well as those it defines as an extension.

842 CHAPTER 20 CORBA CASE STUDY

When an interface such as Z extends more than one interface, there is a possibility
that it may inherit a type, constant or exception with the same name from two different
interfaces. For example, suppose that both B and C define a type called Q; then the use
of Q in the Z interface is ambiguous unless a scoped name such as B::Q or C::Q is given.
IDL does not permit an interface to inherit methods or attributes with common names
from two different interfaces.

All IDL interfaces inherit from the type Object, which implies that all IDL
interfaces are compatible with the type Object. This makes it possible to define IDL
operations that can takes as argument or return as a result a remote object reference of
any type. The bind and resolve operations in the Naming Service are examples.

Figure 20.8 IDL constructed types.

Type Examples Use

sequence typedef sequence <Shape, 100> All;
typedef sequence <Shape> All
bounded and unbounded sequences
of Shapes

Defines a type for a variable-length
sequence of elements of a specified IDL
type. An upper bound on the length may
be specified.

string string name;
typedef string<8> SmallString;
unbounded and bounded sequences
of characters

Defines a sequences of characters,
terminated by the null character. An
upper bound on the length may be
specified.

array typedef octet uniqueId[12];
typedef GraphicalObject GO[10][8]

Defines a type for a multi-dimensional
fixed-length sequence of elements of a
specified IDL type.

record struct GraphicalObject {
 string type;
 Rectangle enclosing;
 boolean isFilled;
};

Defines a type for a record containing a
group of related entities. Structs are
passed by value in arguments and
results.

enumerated enum Rand
 (Exp, Number, Name);

The enumerated type in IDL maps a type
name onto a small set of integer values.

union union Exp switch (Rand) {
 case Exp: string vote;
 case Number: long n;
 case Name: string s;
};

The IDL discriminated union allows one
of a given set of types to be passed as an
argument. The header is parameterized
by an enum, which specifies which
member is in use.

SECTION 20.2 CORBA RMI 843

IIDL type identifiers ◊ Section 20.2.2 mentioned that type identifiers are generated by
the IDL compiler for each type in an IDL interface. For example, the IDL type for the
interface Shape type (Figure 20.7) might be:

IDL:Whiteboard/Shape:1.0

This example shows that an IDL type name has three parts – the IDL prefix, a type name
and a version number. Since interface identifiers are used as keys for accessing interface
definitions in the interface repository, programmers must ensure that they provide a
unique mapping to the interfaces themselves. A programmer may use the IDL prefix
pragma to prefix an additional string to the type name in order to distinguish their own
types from those of others.

IDL pragma directives: These allow additional, non-IDL properties to be specified for
components in an IDL interface (see Henning and Vinoski [1999]). These properties
include, for example, specifying that an interface will be used only locally, or supplying
the value of an interface repository ID. Each pragma is introduced by #pragma and
specifies its type, for example:

#pragma version Whiteboard 2.3

Extensions to CORBA ◊ Some new features were added in version 2.3 of the CORBA
specification. These include the ability to pass non-CORBA objects by value and an
asynchronous variant of RMI. Both of these are discussed in the CACM article by
Vinoski [1998].

Objects that can be passed by value: As we have seen above, IDL arguments and results
of constructed and primitive types are passed by value, whereas those that refer to
CORBA objects are passed by reference. Support for passing non-CORBA objects by
value is now part of CORBA [OMG 2002c]. These non-CORBA objects are object-like
in the sense that they possess both attributes and methods. However, they are purely
local objects in that their operations cannot be invoked remotely. The pass-by-value
facility provides the ability to pass a copy of a non-CORBA object between client and
server.

This is achieved by the addition to IDL of a type called valuetype for representing
non-CORBA objects. A valuetype is a struct with additional method signatures (like
those of an interface). Valuetype arguments and results are passed by value; that is, the
state is passed to the remote site and used to produce a new object at the destination.

The methods of this new object may be invoked locally, causing its state to
diverge from the state of the original object. Passing the implementation of the methods
is not so straightforward, since client and server may use different languages. However,
if client and server are both implemented in Java, the code can be downloaded. For a
common implementation in C++, the necessary code would need to be present at both
client and server.

This facility is useful when it is beneficial to place a copy of an object in the client
process to enable it to receive local invocations. However, it does not get us any nearer
to passing CORBA objects by value.

Asynchronous RMI: CORBA now provides a form of asynchronous RMI which allows
clients to make non-blocking invocation requests on CORBA objects [OMG 2004e]. It
is intended to be implemented in the client. Therefore a server is generally unaware as

844 CHAPTER 20 CORBA CASE STUDY

to whether it is invoked synchronously or asynchronously. (One exception is the
Transaction Service which would need to be aware of the difference.)

Asynchronous RMI adds two new variants to the invocation semantics of RMIs:

• callback, in which a client uses an extra parameter to pass a reference to a callback
with each invocation, so that the server can call back with the results;

• and polling, in which the server returns a valuetype object that can be used to poll
or wait for the reply.

The architecture of asynchronous RMI allows an intermediate agent to be deployed to
make sure that the request is carried out and if necessary to store the reply. Thus it is
appropriate for use in environments where clients may become temporarily
disconnected – as, for example, a client using a laptop in a train.

20.2.4 CORBA remote object references

CORBA 2.0 specifies a format for remote object references that is suitable for use,
whether or not the remote object is to be activated by an implementation repository.
References using this format are called interoperable object references (IORs). The
following figure is based on Henning [1998], which contains a more detailed account of
IORs:

• The first field of an IOR specifies the type identifier of the IDL interface of the
CORBA object. Note that if the ORB has an interface repository, this type name
is also the interface repository identifier of the IDL interface, which allows the
IDL definition for the interface to be retrieved at runtime.

• The second field specifies the transport protocol and the details required by that
particular transport protocol to identify the server. In particular, the Internet Inter-
ORB protocol (IIOP) uses TCP, in which the server address consists of a host
domain name and a port number.

• The third field is used by the ORB to identify a CORBA object. It consists of the
name of an object adapter in the server and the object name of a CORBA object
specified by the object adapter.

Transient IORs for CORBA objects last only as long as the process that hosts those
objects, whereas persistent IORs last between activations of the CORBA objects. A
transient IOR contains the address details of the server hosting the CORBA object,
whereas a persistent IOR contains the address details of the implementation repository
with which it is registered. In both cases, the client ORB sends the request message to
the server whose address details are given in the IOR. We now discuss how the IOR is
used to locate the servant representing the CORBA object in the two cases.

IOR format

IDL interface type id Protocol and address details Object key

interface repository
identifier

IIOP host domain
name

 port number adapter name object name

SECTION 20.2 CORBA RMI 845

Transient IORs: The server ORB core receives the request message containing the
object adapter name and object name of the target. It uses the object adapter name to
locate the object adapter, which uses the object name to locate the servant.

Persistent IORs: An implementation repository receives the request. It extracts the
object adapter name from the IOR in the request. Provided that the object adapter
name is in its table, it attempts if necessary to activate the CORBA object at the host
address specified in its table. Once the CORBA object has been activated, the
implementation repository returns its address details to the client ORB, which uses
them as the destination for RMI request messages, which include the object adapter
name and the object name. These enable the server ORB core to locate the object
adapter, which uses the object name to locate the servant, as before.

The second field of an IOR may be repeated, so as to specify the host domain name and
port number of more than one destination, to allow for an object or an implementation
repository to be replicated at several different locations.

The reply message in the request-reply protocol includes header information that
enables the procedure for persistent IORs to be carried out. In particular, it includes a
status entry that can indicate whether the request should be forwarded to a different
server, in which case the body of the reply includes an IOR that contains the address of
the server of the newly activated object.

20.2.5 CORBA language mappings

We have seen from our examples that the mapping from the types in IDL to Java types
is quite straightforward. The primitive types in IDL are mapped to the corresponding
primitive types in Java. Structs, enums and unions are mapped to Java classes; sequences
and arrays in IDL are mapped to arrays in Java. An IDL exception is mapped to a Java
class that provides instance variables for the fields of the exception and constructors.
The mappings in C++ are similarly straightforward.

However, we have seen that some difficulties arise with mapping the parameter
passing semantics of IDL onto those of Java. In particular, IDL allows methods to return
several separate values via output parameters, whereas Java can have only a single
result. The Holder classes are provided to overcome this difference, but this requires the
programmer to make use of them, which is not altogether straightforward. For example,
the method getPerson in Figure 5.2 is defined in IDL as follows:

void getPerson(in string name, out Person p);

and the equivalent method in the Java interface would be defined as:

void getPerson(String name, PersonHolder p);

and the client must provide an instance of PersonHolder as the argument of its
invocation. The holder class has an instance variable that holds the value of the
argument for the client to access when the invocation returns. It also has methods to
transmit the argument between server and client.

Although C++ implementations of CORBA can handle out and inout parameters
quite naturally, C++ programmers suffer from a different set of problems with
parameters, related to storage management. These difficulties arise when object

846 CHAPTER 20 CORBA CASE STUDY

references and variable-length entities such as strings or sequences are passed as
arguments.

For example, in Orbix [Baker 1997] the ORB keeps reference counts to remote
objects and proxies and releases them when they are no longer needed. It provides
programmers with methods for releasing or duplicating them. Whenever a server
method has finished executing, the out arguments and results are released and the
programmer must duplicate them if they will still be needed. For example, a C++ servant
implementing the ShapeList interface will need to duplicate the references returned by
the method allShapes. Object references passed to clients must be released when they
are no longer needed. Similar rules apply to variable-length parameters.

In general, programmers using IDL not only have to learn the IDL notation itself
but also have an understanding of how its parameters are mapped onto the parameters
of the implementation language.

20.2.6 Integration of CORBA and Web Services

CORBA was already well established and widely used within organizations, when web
services started to emerge, early in the twenty-first century. Chapter 19 argues that web
services are very suitable for use for interworking between organizations over the
Internet. Section 19.2.4 makes a comparison of web services and CORBA, showing that
although CORBA is not suited to inter-organizational distributed applications, its main
benefits are efficiency and the fact that it provides a set of services for transactions,
concurrency control, security and so forth (see Section 20.3).

Many organizations rely on CORBA applications, with their associated benefits
of reliability and good performance. But there could be considerable additional
advantages from integrating CORBA services with web services. A useful approach
would be to provide a WSDL service description (Section 19.3) to existing CORBA
services. The IDL definition of a CORBA object would be expressed in XML in the
abstract part of a WSDL service description and the communication protocol (for
example, IIOP) would be specified in the concrete part of the description.

This would allow a CORBA object to be accessed by clients as though it were any
other web service. Once that is possible, new web services may be built by combining
CORBA services with web service interfaces with other web services. This would
enable the users of CORBA services to benefit from the advantages of the flexibility and
lightweight infrastructure associated with web services.

In autumn 2004, the OMG called for proposals for a set of CORBA bindings to
WSDL, which will require:

• the mapping of CORBA interfaces defined in IDL into WSDL descriptions;

• the mapping of IDL types into XML schema types;

• a mechanism for making instances of CORBA objects accessible as web services
via the communication mechanism required by those CORBA objects.

Once this work is completed, it should be possible to advertise the interfaces of existing
CORBA services in WSDL. Clients will be able to access these interfaces as though they
are web services, without being aware of the actions of the underlying CORBA
middleware. Client programs will be compiled to use the message format, data

SECTION 20.3 CORBA SERVICES 847

representation and communication protocols specified in the WSDL binding. They will
appear to address CORBA objects by means of URLs but these will be translated into
IORs.

20.3 CORBA services

CORBA includes specifications for services that may be required by distributed objects.
In particular, the Naming Service is an essential addition to any ORB, as we saw in our
programming example in Section 20.2. An index to documentation on all of the services
can be found at OMG’s web site at [www.omg.org]. Many of the CORBA services are
described in Orfali et al. [1996 and 1997]. The CORBA services include the following:

Naming Service: The CORBA naming service is detailed in Section 20.3.1.

Event Service and Notification Service: The CORBA event service is discussed in
20.3.2 and the notification service in 20.3.3.

Security service: The CORBA security service is discussed in Section 20.3.4.

Trading service: In contrast to the Naming Service which allows CORBA objects
to be located by name, the Trading Service [OMG 2000a] allows them to be located
by attribute – that is, it is a directory service. Its database contains a mapping from
service types and their associated attributes onto remote object references of CORBA
objects. The service type is a name, and each attribute is a name-value pair. Clients
make queries by specifying the type of service required, together with other
arguments specifying constraints on the values of attributes, and preferences for the
order in which to receive matching offers. Trading servers can form federations in
which they not only use their own databases but also perform queries on behalf of
one anothers’ clients. For a detailed description of the Trading Service, see Henning
and Vinoski [1999].

Transaction service and concurrency control service: The object transaction serv-
ice [OMG 2003] allows distributed CORBA objects to participate in either flat or
nested transactions. The client specifies a transaction as a sequence of RMI calls,
which are introduced by begin and terminated by commit or rollback (abort). The
ORB attaches a transaction identifier to each remote invocation and deals with begin,
commit and rollback requests. Clients can also suspend and resume transactions. The
transaction service carries out a two-phase commit protocol. The concurrency control
service [OMG 2000b] uses locks to apply concurrency control to the access of COR-
BA objects. It may be used from within transactions or independently.

Persistent state service: Section 5.2.5 explained that persistent objects can be
implemented by storing them in a passive form in a persistent object store while they
are not in use and activating them when they are needed. Although ORBs activate
CORBA objects with persistent object references, getting their implementations from
the implementation repository, they are not responsible for saving and restoring the
state of CORBA objects.

The CORBA Persistent State Service is intended to be suitable for use as a
persistent object store for CORBA objects [OMG 2002d]. It replaces an earlier

848 CHAPTER 20 CORBA CASE STUDY

service called the Persistent Object Service. It is based on an architecture in which
servants have access to a datastore, for example a database or a file system, via an
internal interface. Servants that are to represent persistent objects are called storage
objects and they are kept in storage homes both within the server process and the
datastore. Each storage home contains only storage objects of a particular type. A
Java-like language is provided for specifying the interfaces of storage objects and
associating them with storage homes. The servants can create and access storage
objects within their storage homes. Storage objects may also be used transparently
via programming languages including Java and C++. For transparent persistence, a
pre-processor inserts operations to transfer objects between the servants and the
datastore. The Persistent State Service is designed to be used in the context of
transactions in the Transaction Service.

Life cycle service The life cycle service defines conventions for creating, deleting,
copying and moving CORBA objects. It specifies how clients can use factories to
create objects in particular locations, allowing persistent storage to be used if
required. It defines an interface that allows clients to delete CORBA objects or to
move or copy them to a specified location. Strategies for making shallow and deep
copies are discussed [OMG 2002e].

20.3.1 CORBA Naming Service

The CORBA Naming Service is a sophisticated example of the binder described in
Chapter 5. It allows names to be bound to the remote object references of CORBA
objects within naming contexts.

As explained in Section 9.2, a naming context is the scope within which a set of
names applies – each of the names within a context must be unique. A name can be
associated with either an object reference for a CORBA object in an application or with
another context in the naming service. Contexts may be nested so as to provide a
hierarchic name space, as shown in Figure 20.9, in which CORBA objects are shown in
the normal way, but naming contexts are shown as plain ovals. The graph on the left
shows an entry for the ShapeList object described in the programming example in
Section 20.2.1.

An initial naming context provides a root for a set of bindings. Note that more than
one initial naming context can point into the same naming graph. In practice, each

Figure 20.9 Naming graph in CORBA Naming Service

initial naming context

ShapeList
C

D E

B

initial naming context

P

R S T

V

Q U

initial naming context

XX

SECTION 20.3 CORBA SERVICES 849

instance of an ORB has a single initial naming context, but name servers associated with
different ORBs can form federations, as described later in this section. Client and server
programs request the initial naming context from the ORB, as shown in Figure 20.5, by
invoking its method resolve_initial_references, giving "NameService" as argument. The
ORB returns a reference to an object of type NamingContext – see Figure 20.10. This
refers to the initial context of the name server for that ORB. Since there can be several
initial contexts, objects do not have absolute names – names are always interpreted
relative to an initial naming context.

A name with one or more components can be resolved, starting in any naming
context. To resolve a name with several components, the naming service looks in the
starting context for a binding that matches the first component. If one exists, it will be
either a remote object reference or a reference to another naming context. If the result is
a naming context, the second component of the name is resolved in that context. This
procedure is repeated until all the components of a name have been resolved and a
remote object reference obtained, unless the matching fails on the way.

The names used by the CORBA Naming Service are two-part names, called
NameComponents, each of which consists of two strings, one for the name and the other
for the kind of the object. The kind field provides a single attribute that is intended for
use by applications and may contain any useful descriptive information; it is not
interpreted by the Naming Service.

 Although CORBA objects are given hierarchic names by the Naming Service,
these names cannot be expressed as pathnames like those of UNIX files. So, in Figure
20.9, we cannot refer to the object on the far right as /V/T. This is because names can
include any characters, which precludes the possibility of having a delimiter.

 Figure 20.10 shows the main operations provided by the NamingContext class of
the CORBA Naming Service, defined in CORBA IDL. The full specification may be
obtained from OMG [OMG2004b]. For simplicity, our figure does not describe the
exceptions raised by the methods. For example, the resolve method can throw a
NotFound exception, and bind can throw an AlreadyBound exception.

Clients use the resolve method to look up object references by name. Its return
type is Object, so it can return references to any type of object belonging to applications.
The result must be narrowed before it can be used to invoke a method in an application
remote object, as shown in Figure 20.5, line 2. The argument of resolve is of type Name,
which is defined as a sequence of name components. This means that the client must
construct a sequence of name components before making the call. Figure 20.5 showed
a client making an array called path consisting of a single name component, which it
used as argument to resolve. This does not seem a very convenient alternative to using
a normal pathname.

Servers of remote objects use the bind operation to register names for their objects
and unbind to remove them. The bind operation binds a given name and remote object
reference and is invoked on the context in which the binding is to be added. See Figure
20.4, in which the name ShapeList was bound in the initial naming context. In that
example, the method rebind is used because the bind operation throws an exception if it
is called with a name that already has a binding, whereas rebind allows bindings to be
replaced.

 The bind_new_context operation is used to create a new context and to bind it
with the given name in the context on which it was invoked. Another method called

850 CHAPTER 20 CORBA CASE STUDY

bind_context binds a given naming context to a given name in the context on which it
was invoked. The unbind method can be used to remove contexts as well as names.

The operation list is intended to be used for browsing the information available
from a context in the Naming Service. It returns a list of bindings from a target
NameContext. Each binding consists of a name and a type – an object or a context.
Sometimes, a naming context may contain a very large number of bindings, in which
case it would be undesirable to return them all as the result of a single invocation. For
this reason, the list method returns some maximum number of bindings as a result of a
call to list, and if further bindings remain to be sent, it arranges to return the results in
batches. This is achieved by returning an iterator as a second result. The client uses the
iterator to retrieve the remainder of the results a few at a time.

The method list is shown in Figure 20.10, but the definitions of the types of its
arguments are omitted for the sake of simplicity. The type BindingList is a sequence of
bindings, each of which contains a name and its type, which is either a context or remote
object reference. The type BindingIterator provides a method next_n for accessing its
next set of bindings; its first argument specifies how many bindings are wanted and its
second argument receives a sequence of bindings. The client calls the method list giving
as first argument the maximum number of bindings to be obtained immediately via the
second argument. The third argument is an iterator, which can be used to obtain the
remainder of the bindings, if any.

The CORBA name space allows for the federation of Naming Services, using a
scheme in which each server provides a subset of the name graph. For example, in
Figure 20.9, the initial naming contexts in the graphs in the middle and on the right are
managed by different servers. The graph in the middle has a binding labelled ‘XX’ to a
context in the graph on the right by which clients may access objects named in the

Figure 20.10 Part of the CORBA Naming Service NamingContext interface in IDL

struct NameComponent { string id; string kind; };

typedef sequence <NameComponent> Name;

interface NamingContext {

void bind (in Name n, in Object obj);
binds the given name and remote object reference in my context.

void unbind (in Name n);
removes an existing binding with the given name.

void bind_new_context(in Name n);
creates a new naming context and binds it to a given name in my context.

Object resolve (in Name n);
 looks up the name in my context and returns its remote object reference.

void list (in unsigned long how_many, out BindingList bl, out BindingIterator bi);
returns the names in the bindings in my context.

};

SECTION 20.3 CORBA SERVICES 851

remote graph. To complete the federation, the graph on the right would need to add a
binding to a node in the middle graph. An organization can provide access to some or
all of the contexts in its name space by providing remote name servers with remote
references to them.

The Java implementation of the CORBA Naming Service is very simple and is
called transient because it stores all of its bindings in volatile memory. Any serious
implementation would at least keep copies of its naming graph in files. As we have seen
in the DNS study, replication can be used to provide better availability.

20.3.2 CORBA Event Service

The CORBA Event Service specification defines interfaces allowing objects of interest,
called suppliers, to communicate notifications to subscribers, called consumers. The
notifications are communicated as arguments or results of ordinary synchronous
CORBA remote method invocations. Notifications may be propagated either by being
pushed by the supplier to the consumer or pulled by the consumer from the supplier. In
the first case, the consumers implement the PushConsumer interface which includes a
method push that takes any CORBA data type as argument. Consumers register their
remote object references with the suppliers. The supplier invokes the push method,
passing a notification as argument. In the second case, the supplier implements the
PullSupplier interface, which includes a method pull that receives any CORBA data
type as its return value. Suppliers register their remote object references with the
consumers. The consumers invoke the pull method and receive a notification as result.

The notification itself is transmitted as an argument or result whose type is any,
which means that the objects exchanging notifications must have an agreement about the
contents of notifications. Application programmers, however, may define their own IDL
interfaces with notifications of any desired type.

Event channels are CORBA objects that may be used to allow multiple suppliers
to communicate with multiple consumers in an asynchronous manner. An event channel
acts as a buffer between suppliers and consumers. It can also multicast the notifications
to the consumers. Communication via an event channel may use either the push or pull
style. The two styles may be mixed; for example, suppliers may push notifications to the
channel and consumers may pull notifications from it.

When a distributed application needs to use asynchronous notifications, it creates
an event channel, which is a CORBA object whose remote object reference may be
supplied to the components of the application via the Naming Service or by means of an
RMI. The suppliers in the application make themselves available for subscription by
getting proxy consumers from the event channel and connecting the suppliers to them
by passing them their remote object references. The consumers in the application
subscribe to notifications by getting proxy suppliers from the notification channel and
connecting the consumers to them. The proxy suppliers and consumers are available in
both push and pull styles. When a supplier generates a notification using the push style
of interaction, it calls the push method of a push proxy consumer. The notification
passes through the channel and is given to the proxy suppliers, which pass them on to
the consumers, as shown in Figure 20.11. If the consumers use the pull style of
interaction, they will call the pull method of a pull proxy supplier.

852 CHAPTER 20 CORBA CASE STUDY

 The presence of the proxy suppliers and proxy consumers makes it possible to
construct chains of event channels in which each channel supplies notifications to be
consumed by the following channel. The event channels in the CORBA model are
similar to the observers defined in Figure 5.11. They may be programmed to carry out
some of the roles of observers discussed in Section 5.4. However, notifications do not
carry any form of identifiers, and therefore the recognition of patterns or the filtering of
notifications will need to be based on type information put in the notifications by the
application.

A fuller explanation of the CORBA Event Service and an outline of its main
interfaces is given in Farley [1998]. The full specification of the CORBA Event service
is in [OMG 2004c]. However, the specification does not state how to create an event
channel nor how to request the reliability required from it.

20.3.3 CORBA Notification Service

The CORBA Notification Service [OMG 2004d] extends the CORBA Event Service,
retaining all of its features including event channels, event consumers and event
suppliers. The event service provides no support for filtering events or for specifying
delivery requirements. Without the use of filters, all the consumers attached to a channel
have to receive the same notifications as one another. And without the ability to specify
delivery requirements, all of the notifications sent via a channel are given the delivery
guarantees built into the implementation.

The notification service adds the following new facilities:

• Notifications may be defined as data structures. This is an enhancement of the
limited utility provided by notifications in the event service, whose type could
only be either any or a type specified by the application programmer.

• Event consumers may use filters that specify exactly which events they are
interested in. The filters may be attached to the proxies in a channel. The proxies
will forward notifications to event consumers according to constraints specified in
filters in terms of the contents of each notification.

• Event suppliers are provided with a means of discovering the events the
consumers are interested in. This allows them to generate only those events that
are required by the consumers.

Figure 20.11 CORBA event channels

consumersupplier

proxy consumer
notification

proxy supplier

event channel

notificationnotification

SECTION 20.3 CORBA SERVICES 853

• Event consumers can discover the event types offered by the suppliers on a
channel, which enables them to subscribe to new events as they become available.

• It is possible to configure the properties of a channel, a proxy or a particular event.
These properties include the reliability of event delivery, the priority of events, the
ordering required (for example, FIFO or by priority) and the policy for discarding
stored events.

• An event type repository is an optional extra. It will provide access to the structure
of events, making it convenient to define filtering constraints.

The Structured Event type introduced by the notification service provides a data
structure into which a wide variety of different types of notification can be mapped.
Filters can be defined in terms of the components of the Structured Event type. A
structured event consists of an event header and an event body. The following example
illustrates the contents of the header:

The domain type refers to the defining domain (for example, "finance", "hotel" or
"home"). The event type categorizes the type of event uniquely within the domain (for
example, "stock quote", "breakfast time", "burglar alarm"). The event name uniquely
identifies the specific instance of the event being transmitted. The remainder of the
header contains a list of <name, value> pairs, which are intended to be used to specify
reliability and other requirements on event delivery.

The following example illustrates the information in the body of a structured
event:

The first part of the event body contains a sequence of <name, value> pairs which are
intended for use by the filters. It is expected that different industry domains will define
standards for the <name, value> pairs that are used in the filterable part of the event body
– the same names and values will be used when defining filters. Perhaps when the
burglar alarm goes off, the event may include the state of the alarm bell, whether the
front door is open and the location of the cat. The remainder of the event body is
intended for transmitting data relating to the particular event; for example, when the
burglar alarm goes off, it might contain a digital photograph of the interior of the
premises.

Filter objects are used by proxies in making decisions as to whether to forward
each notification. A filter is designed as a collection of constraints, each of which is a
data structure with two components:

• A list of data structures, each of which indicates an event type in terms of its
domain name and event type, for example, "home", "burglar alarm". The list
includes all of the event types to which the constraint should apply.

domain type event type event name requirements

"home" "burglar alarm" "21 Mar at 2pm" "priority", 1000

filterable part

name, value name, value name, value remainder

"bell" , "ringing" "door" ,"open" "cat", "outside"

854 CHAPTER 20 CORBA CASE STUDY

• A string containing a boolean expression involving the values of the event types
listed above. For example:

("domain type" == "home" && "event type" == "burglar alarm") &&
("bell" != "ringing" !! "door" == "open")

Our example uses an informal syntax. The notification service specification includes the
definition of a constraint language, which is an extension of the constraint language used
by the trading service.

20.3.4 CORBA Security Service

The CORBA Security Service [Blakley 1999, Baker 1997, OMG 2002b] includes the
following:

• Authentication of principals (users and servers); generating credentials for
principals (that is, certificates stating their rights); delegation of credentials is
supported as described in Section 7.2.5.

• Access control can be applied to CORBA objects when they receive remote
method invocations. Access rights may for example be specified in access control
lists (ACLs).

• Security of communication between clients and objects, protecting messages for
integrity and confidentiality.

• Auditing by servers of remote method invocations.

• Facilities for non-repudiation. When an object carries out a remote invocation on
behalf of a principal, the server creates and stores credentials that prove that the
invocation was done by that server on behalf of the requesting principal.

To guarantee that security is applied correctly to remote method invocations, the
security service requires cooperation on behalf of the ORB. To make a secure remote
method invocation, the client’s credentials are sent in the request message. When the
server receives a request message, it validates the client’s credentials to see, for
example, if they are fresh and signed by an acceptable authority. If the credentials are
valid, they are used to make a decision as to whether the principal has the right to access
the remote object using the method in the request message. This decision is made by
consulting an object containing information about which principal is allowed to access
each method of the target object (possibly in the form of an ACL). If the client has
sufficient rights, the invocation is carried out and the result returned to the client,
together with the server’s credentials if needed. The target object may also record details
about the invocation in an audit log or store non-repudiation credentials.

CORBA allows a variety of security policies to be specified according to
requirements. A message-protection policy states whether client or server (or both) must
be authenticated, and whether messages must be protected against disclosure and/or
modification. Policies may also be specified with respect to auditing and non-
repudiation; for example, a policy might state which methods and arguments they
should be applied to.

SECTION 20.4 SUMMARY 855

Access control takes into account that many applications have large numbers of
users and even larger numbers of objects, each with its own set of methods. Users are
supplied with a special type of credential called a privilege according to their roles.
Objects are grouped into domains. Each domain has a single access control policy
specifying the access rights for users with particular privileges to objects within that
domain. To allow for the unpredictable variety of methods, each method is classified in
terms of one of four generic methods (get, set, use and manage). Get methods just return
parts of the object state, set methods alter the object state, use methods cause the object
to do some work, and manage methods perform special functions that are not intended
to be available for general use. Since CORBA objects have a variety of different
interfaces, the access rights must be specified for each new interface in terms of the
above generic methods. This involves application designers being involved in the
application of access control, the setting of appropriate privilege attributes (for example,
groups or roles) and in helping the user to acquire the appropriate privileges for their
task.

In its simplest form, security may be applied in a manner that is transparent to
applications. It includes applying the required protection policy to remote method
invocations, together with auditing. The security service allows users to acquire their
individual credentials and privileges in return for supplying authentication data such as
a password.

20.4 Summary

The main component of CORBA is the Object Request Broker or ORB, which allows
clients written in one language to invoke operations in remote objects (called CORBA
objects) written in another language. CORBA addresses other aspects of heterogeneity
as follows:

• The CORBA General Inter-ORB protocol (GIOP) includes an external data
representation called CDR, which makes it possible for clients and servers to
communicate irrespective of their hardware. It also specifies a standard form for
remote object references.

• GIOP also includes a specification for the operations of a request-reply protocol
that can be used irrespective of the underlying operating system.

• The Internet Inter-ORB Protocol (IIOP) implements the request-reply protocol
over TCP. IIOP remote object references include the domain name and port
number of a server.

A CORBA object implements the operations in an IDL interface. All that clients need
to know to access a CORBA object is the operations available in its interface. The client
program accesses CORBA objects via proxies or stubs, which are generated
automatically from their IDL interfaces in the language of the client. Server skeletons
for CORBA objects are generated automatically from their IDL interfaces in the
language of the client. The object adapter is an important component of CORBA

856 CHAPTER 20 CORBA CASE STUDY

servers. Its roles include activating and deactivating servants, creating remote object
references and forwarding request messages to the appropriate servants.

The CORBA architecture allows CORBA objects to be activated on demand. This
is achieved by a component called the implementation repository, which keeps a
database of implementations indexed by their object adapter names. When a client
invokes a CORBA object, it can be activated if necessary in order to carry out the
invocation.

An interface repository is a database of IDL interface definitions indexed by
repository IDs. Since the IOR of a CORBA object contains the repository ID of its
interface, the appropriate interface repository can be used to get the information about
the methods in its interface which is required for dynamic method invocations.

CORBA services provide functionality above RMI, which may be required by
distributed applications, allowing them to use additional services such as naming and
directory services, event notifications, transactions or security as required.

EXERCISES

20.1 The Task Bag is an object that stores pairs of (key and value). A key is a string and a
value is a sequence of bytes. Its interface provides the following remote methods:

pairOut: with two parameters through which the client specifies a key and a value
to be stored.

pairIn: whose first parameter allows the client to specify the key of a pair to be
removed from the Task Bag. The value in the pair is supplied to the client via a
second parameter. If no matching pair is available, an exception is thrown.

readPair: is the same as pairIn except that the pair remains in the Task Bag.

Use CORBA IDL to define the interface of the Task Bag. Define an exception that can
be thrown whenever any one of the operations cannot be carried out. Your exception
should return an integer indicating the problem number and a string describing the
problem. The Task Bag interface should define a single attribute giving the number of
tasks in the bag. page 839

20.2 Define an alternative signature for the methods pairIn and readPair, whose return value
indicates when no matching pair is available. The return value should be defined as an
enumerated type whose values can be ok and wait. Discuss the relative merits of the two
alternative approaches. Which approach would you use to indicate an error such as a key
that contains illegal characters? page 840

20.3 Which of the methods in the Task Bag interface could have been defined as a oneway
operation? Give a general rule regarding the parameters and exceptions of oneway
methods. In what way does the meaning of the oneway keyword differ from the
remainder of IDL? page 840

20.4 The IDL union type can be used for a parameter that will need to pass one of a small
number of types. Use it to define the type of a parameter that is sometimes empty and
sometimes has the type Value. page 842

EXERCISES 857

20.5 In Figure 20.1 the type All was defined as a sequence of a fixed length. Redefine this
as an array of the same length. Give some recommendations as to the choice between
arrays and sequences in an IDL interface. page 842

20.6 The Task Bag is intended to be used by cooperating clients, some of which add pairs
(describing tasks) and others remove them (and carry out the tasks described). When a
client is informed that no matching pair is available, it cannot continue with its work
until a pair becomes available. Define an appropriate callback interface for use in this
situation. page 835

20.7 Describe the necessary modifications to the Task Bag interface to allow callbacks to be
used. page 835

20.8 Which of the parameters of the methods in the TaskBag interface are passed by value
and which are passed by reference? page 830

20.9 Use the Java IDL compiler to process the interface you defined in Exercise 20.1. Inspect
the definition of the signatures for the methods pairIn and readPair in the generated
Java equivalent of the IDL interface. Look also at the generated definition of the holder
method for the value argument for the methods pairIn and readPair. Now give an
example showing how the client will invoke the pairIn method, explaining how it will
acquire the value returned via the second argument. page 845

20.10 Give an example to show how a Java client will access the attribute giving the number
of tasks in the Task bag object. In what respects does an attribute differ from an instance
variable of an object? page 841

20.11 Explain why the interfaces to remote objects in general and CORBA objects in
particular do not provide constructors. Explain how CORBA objects can be created in
the absence of constructors. Chapter 5 and page 833

20.12 Redefine the Task Bag interface from Exercise 20.1 in IDL so that it makes use of a
struct to represent a Pair, which consists of a Key and a Value. Note that there is no need
to use a typedef to define a struct. page 842

20.13 Discuss the functions of the implementation repository from the point of view of
scalability and fault tolerance. page 838, page 844

20.14 To what extent may CORBA objects be migrated from one server to another?
page 838, page 844

20.15 Discuss the benefits and drawbacks of the two-part names or NameComponents in the
CORBA naming service. page 848

20.16 Give an algorithm that describes how a multipart name is resolved in the CORBA
naming service. A client program needs to resolve a multipart name with components
“A”, “B” and “C”, relative to an initial naming context. How would it specify the
arguments for the resolve operation in the naming service? page 848

20.17 A virtual enterprise consists of a collection of companies who are cooperating with one
another to carry out a particular project. Each company wishes to provide the others with
access to only those of its CORBA objects relevant to the project. Describe an
appropriate way for the group to federate their CORBA Naming Services. page 850

858 CHAPTER 20 CORBA CASE STUDY

20.18 Discuss how to use directly connected suppliers and consumers of the CORBA event
service in the context of the shared whiteboard application. The PushConsumer and
PushSupplier interfaces are defined in IDL as follows:

interface PushConsumer {
void push(in any data) raises (Disconnected);
void disconnect_push_consumer();

}

interface PushSupplier {
void disconnect_push_supplier();

}

Either the supplier or the consumer may decide to terminate the event communication
by calling disconnect_push_supplier() or disconnect_push_consumer() respectively.

page 851

20.19 Describe how to interpose an Event Channel between the supplier and the consumers in
your solution to Exercise 20.18. An event channel has the following IDL interface:

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();

};

where the interfaces SupplierAdmin and ConsumerAdmin, which allow the supplier and
the consumer to get proxies are defined in IDL as follows:

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();

};

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();

};

The interface for the proxy consumer and procy supplier are defined in IDL as follows:

interface ProxyPushConsumer : PushConsumer{
void connect_push_supplier (in PushSupplier supplier)

raises (AlreadyConnected);
};

interface ProxyPushSupplier : PushSupplier{
void connect_push_consumer (in PushConsumer consumer)

raises (AlreadyConnected);
};

What advantage is gained by the use of the event channel? page 851

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

